On the braid groups I
Keywords:
braid, braid groupAbstract
The braid group on n letters is an abstract group generated by two relations and a set of n–1 generators. In this article, some aspects of the structure of the braid group B n will be presented. More precisely, we will investigate properties involving the generators of the group.
References
E. Artin, (1925). Theorie der Zöpfe, Abhandlungen aus dem Mathematischen, Abh. Math. Sem. Univ. Hamburg 4, pp. 47-72.
E. Artin, (1947). Theory of braids, Annals of Math. (2) 48, pp. 101-126.
E. Artin, (1947). Braids and permutations, Annals of Math. 48, pp. 643-649.
E. Artin, (1950). The theory of braids, American Scientist 38(1), 112-119.
T.H. Bell, D.C. Luo, L. Seaton, S.P. Serra, (2019). Gordian Adjacency for Positive Braid Knots, Preprint arXiv: math.GT/1910.02933v1, https://arxiv.org/pdf/1910.02933v1.pdf.
J.S. Birman, (1974). Braids, Links and Mapping Class Groups, Annals of Math. Studies 82, Princeton Univ. Press.
J.S. Birman, K.H. Ko, S.J. Lee, (1998). A new approach to the word and the conjugacy problem in the braid groups, Adv. Math. 139, pp. 322-353.
O. Bogopolski, (2008). Introduction to Group Theory, European Mathematical Society Publishing House, Zürich.
F. Bohnenblust, (1947). The Algebrical braid group, Ann. of Math., 48(1), 127-136.
J. Crisp, L. Paoluzzi, (2005). On the Classification of CAT(0) Structures for the 4-String Braid Group, Michigan Math. Journal, 53(1), 133-163.
P. Dehornoy, F. Digne, E. Godelle, D. Krammer, J. Michel, (2014). Foundations of Garside theory, EMS Tracts in Mathematics Vol. 22.
D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, W.P. Thurston, (1992). Word processing in groups, Jones and Bartlett Publishers, Boston, MA.
R. Fenn, R. Rimanyi, C. Rourke, (1997). The braid-permutation group, Topology vol. 36, No. 1, pp. 123-135.
D.L. Johnson, (1997). Presentations of groups, Cambridge University Press, United Kingdom.
V. Jugé, (2016). Combinatorics of braids, PhD Thesis. http://www-igm.univ-mlv.fr/~juge/papers/PhD-Thesis.pdf
S. Kamada, (2002). Braid and knot theory in dimension four, American Mathematical Society.
H. Li, Z. Lü, (2020). Crossing-changeable braids from chromatic configuration spaces, arXiv.math.AT/1909.03910v2.
P. Ligouras, (2020). Semigroups, monoids and free groups, Experiences of Teaching with Mathematics, Sciences and Technology, ISSN 2421-7247, Vol. 5, pp. 515-526.
V. Lin, (2004). Braids and Permutations, Arxiv: math.GR/0404528.
R.C. Lyndon, P.E. Schupp, (1977). Combinatorial group theory, Springer-Verlag, Berlin, Heidelberg, New York.
W. Magnus, (1934). Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109, 617-646.
W. Magnus, A. Karrass, D. Solitar, (1976). Combinatorial group theory, Dover Publ. Inc., NewYork.
S. Moran, (1983). The Mathematical Theory of Knots and Braids, North–Holland Mathematics Studies, vol. 82, Elsevier, Amsterdam.
K. Murasugi, B.I. Kurpita, (1999). A Study of Braids, Math. Appl. 484, Kluwer Academic Publishers, Dordrecht.
L. Paris, (2009). Braid groups and Artin groups, in A. Papadopoulos (editor), Handbook of Teichmüller Theory, Volume II, European Mathematical Society Publishing House, Zürich.
D.J.S. Robinson, (2003). An introduction to abstract algebra, Walter de Gruyter, Berlin.
J.J. Rotman, (1995). An introduction to the theory of groups, 4 th ed., Springer-Verlag New York, Ine.
A.I. Suciu, He Wang, (2016). The pure braid groups and their relatives, Preprint arXiv: math.GR/1602.05291v2.
V. Vershinin, (2010). On the singular braid monoid, St. Petersburg Math. J., Vol. 21, No. 5, pp.693-704.
V.V. Vershinin, (2013). About presentations of braid groups and their generalizations, https://arxiv.org/abs/1304.7378.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Panagiote Ligouras
This work is licensed under a Creative Commons Attribution 4.0 International License.