Some remarks on braid and pure braid groups
Keywords:
braid, symmetric group, braid group, pure braid group, left and right braid groupAbstract
In this paper some properties valid for the Artin braid group, the pure braid group and the left and right braid groups are proved. We present relationships between the braid group and the pure braid group and the braid group and the left and right braid group.
References
Birman J.S., (1974). Braids, Links and Mapping Class Groups, Annals of Math. Studies 82, Princeton Univ. Press.
Bogopolski O., (2008). Introduction to Group Theory, European Mathematical Society Publishing House, Zürich.
Dyer J.L., Grossman E.K., (1981). The automorphism group of the braid groups, Amer. J. of Math. 103, 1151-1169.
Garside F.A., (1969). The braid group and other groups, Quart. J. Math. Oxford Ser. 20, 235-254.
Kassel C., Turaev V., (2008). Braid Groups, Grad. Texts in Math. 247, Springer-Verlag, New York.
Ligouras P., (2020). Semigroups, monoids and free groups, Experiences of Teaching with Mathematics, Sciences and Technology, ISSN 2421-7247, Vol. 5, pp. 515-526.
Lin, V., (2004). Braids and Permutations, Arxiv: math.GR/0404528.
Murasugi K., Kurpita, B.I., (1999). A Study of Braids, Math. Appl. 484, Kluwer Academic Publishers, Dordrecht.
Rotman, J.J., (1995). An introduction to the theory of groups, 4 th ed., Springer-Verlag New York, Ine,
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Filomena Pisani

This work is licensed under a Creative Commons Attribution 4.0 International License.