ISSN 2421-7247

Singular pure braid group $\mathbf{S P}_{\mathbf{n}}$

Filomena Pisani

Abstract

This paper aims to prove some relationships of the singular pure braid group. Relations between singular braid group and singular pure braid group are presented in the case of 4 stranded braids.

Key words. Braid, Symmetric group, Singular braid monoid, Singular braid group, Singular pure braid group, Fundamental word.

Sommario. In questo lavoro si intende provare alcune relazioni valide al gruppo treccia singolare pura. Si presentano relazioni tra il gruppo treccia singolare e il gruppo treccia singolare pura concentrandosi al caso che essi hanno solo 4 filamenti.

Parole chiave. Treccia, Gruppo simmetrico, Monoide di treccia singolare, Gruppo treccia singolare, Gruppo treccia singolare pura, parola fondamentale.

Introduction

Braids date back several centuries and have been used universally for ornamental purposes such as hats braids and Arab decorations; and for practical ones (the creation of ropes, fabrics, electric wires, metal tie rods, ...). Today they are described by means of abstract models grouped in the "theory of braids". Braid theory studies the concept of "braid", as in common imagination, and the multiple generalizations that originate in the various branches of mathematics. The idea that binds all the facets and aspects of the braids is that they, if appropriately structured, form a monoid or a group.
In a recent investigation (Ligouras [9]) some new properties of the singular braid monoid $S B_{n}$ were highlighted. The main purpose of this article is to present and deepen some properties of the singular pure braid group $S P_{n}$ and of the particular case of the $S P_{4}$ group which is formed by four filaments.

Preliminaries

$S G_{n}$ group has a presentation made by the same set of generators and defining relators as the presentation of the singular braid monoid $S B_{n}[11,9]$, with the additional property of having its element invertible.

Let X be an arbitrary set. Every bijective application $f: X \rightarrow X$ is called a permutation of X. We denote by $S(X)$ the set of all the permutation of X.

$$
S(X):=\{f \mid f: X \rightarrow X, f \text { bijective }\} .
$$

Let \circ be the binary operation of the composition of applications:

$$
\begin{aligned}
& \circ: S(X) \times S(X) \rightarrow S(X), \text { such that for every } f, g \in S(X) \text { and for every } x \in X \text { it results } \\
& \qquad(f \circ g)(x) \equiv f g(x)=f(g(x)) .
\end{aligned}
$$

Let $i d: X \rightarrow X$ be the identity application of the set $S(X)$ for the operation ${ }^{\circ}$:
for every $f \in S(X)$ and for every $x \in X$ it results

$$
(i d \circ f)(x)=i d(f(x))=f(x)=f(i d(x))=(f \circ i d)(x) .
$$

Proposition. The ordered triplet $\left(S(X),{ }^{\circ}, i d\right)$ is a group.
The group $S(X)$ is called the permutation group of X.
If the set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is finite and of cardinality $n(|X|=n)$, the notation can simplified by writing the set $I_{n}=X=\{1,2, \ldots, n\}$.
In this particular case (X is finite and of cardinality n) we write S_{n} instead of $S(X)$.
The group $\left(S_{n},{ }^{\circ}, \mathrm{id}\right)$ is called a symmetric group of degree n.
The elements of the symmetric group are one-to-one and onto applications.
It is emphasized that if $X=\{1,2, \ldots, n\}$, every element f of S_{n}, as a one-to-one correspondence of X in itself, represents a permutation of $\{1,2, \ldots, n\}$.
Let the set $X=\{1, \ldots, n\}$, the group $\left(S_{n},{ }^{\circ}, i d\right)$, m a positive integer, $2 \leq m \leq n$, and m distinct elements $i_{1}, i_{2}, \ldots, i_{m} \in X$. If a $\gamma \in S_{n}$ is such that:

1) $\gamma\left(i_{k}\right)=i_{k+1}$ se $1 \leq k \leq m-1$
2) $\gamma\left(i_{k}\right)=i_{k} \quad$ se $i_{k} \notin\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$
3) $\gamma\left(i_{m}\right)=i_{1}$
γ is called a cycle of length m. The number m is called the length of the cycle.
To denote a cycle γ of length m we write $\gamma=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$.
A cycle γ of length m is also called an m-cycle.
A 2-cycle is also called transposition or exchange.
A 1-cycle only exists by convention and is (id).
The concept of transposition can also be defined as follows:
A transposition is a permutation that swaps only two objects and leaves the remainder fixed.
In this paper, the term transposition means those permutations that only exchange two consecutive elements which we indicate $s_{i}:=(i, i+1)$ with $1 \leq i \leq n$ and which we call simple transpositions o transpositions.

Theorem ([8]). The group S_{n} has the following presentation:

$$
S_{n}=\left\langle\begin{array}{l|ll}
s_{1}, s_{2}, \ldots, s_{n-1} & \begin{array}{ll}
s_{i}^{2}=1 & \text { for every } i \in\{1, \ldots, n-1\} \\
s_{i} s_{j}=s_{i} s_{j} & \text { for every }|i-j|>1 \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & \text { for every } i \in\{1, \ldots, n-2\}
\end{array}
\end{array}\right\rangle .
$$

Let a natural number $n \geq 1$. The singular braid group on n strands, denoted by $S G_{n}$, is the abstract group generated, in the complete version [6], by

- real generators $\sigma_{1}, \ldots, \sigma_{n-1}$ and their inverses $\sigma_{1}^{-1}, \ldots, \sigma_{n-1}^{-1}$
- singular generators x_{1}, \ldots, x_{n-1} e $x_{1}^{-1}, \ldots, x_{n-1}^{-1}$
from the three B_{n} 's group real relations
(1) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$
for $|i-j|>1$
(2) $\sigma_{i} \sigma_{i}^{-1}=1_{n}=\sigma_{i}^{-1} \sigma_{i}$
for $i=1,2, \ldots, n-1$
(3) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
for $i=1,2, \ldots, n-2$
from the singular relations
(4) $x_{i} x_{j}=x_{j} x_{i}$
for $|i-j|>1$
(5) $x_{i} x_{i}^{-1}=1_{n}=x_{i}^{-1} x_{i}$
for $i=1,2, \ldots, n-1$
and, from the four real-singular relations
(6) $x_{i} \sigma_{j}=\sigma_{j} x_{i}$
for $|i-j|>1$
(7) $x_{i} \sigma_{i}=\sigma_{i} x_{i}$
for $i=1,2, \ldots, n-1$
(8) $x_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} x_{i+1}$
for $i=1,2, \ldots, n-2$
(9) $\sigma_{i} \sigma_{i+1} x_{i}=x_{i+1} \sigma_{i} \sigma_{i+1}$
for $i=1,2, \ldots, n-2$.

The following braid is called fundamental word or Garside fundamental word [2]:

$$
\Delta:=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-2} \sigma_{n-1}\right)\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-3} \sigma_{n-2}\right) \ldots\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}
$$

To denote the fundamental word in B_{n} (Artin's braid group) we will use, according to some authors, the symbol Δ_{n}.
It is highlighted that for every $1 \leq k \leq n$ the following notation holds

$$
\Delta_{k}:=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k-2} \sigma_{k-1}\right)\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k-3} \sigma_{k-2}\right) \ldots\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}
$$

The fundamental Garside braid Δ in B_{n} is inductively defined as:

$$
\Delta_{1}=1, \Delta_{2}=\sigma_{1} \Delta_{1}, \Delta_{3}=\sigma_{1} \sigma_{2} \Delta_{2}, \ldots, \Delta \equiv \Delta_{n}=\sigma_{1} \sigma_{2} \ldots \sigma_{n-1} \Delta_{n-1} \text { for every } n \geq 2
$$

Fig. 1 - Different diagrams of the fundamental braid $\Delta=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \mathrm{di} S G_{4}$

The figure (Fig.1) shows two equivalent diagrams of the fundamental word of the group $S G_{4}$.
To better understand this work and concepts of abstract algebra and braid groups, the author suggests $[2,3,8,10]$.

Some known activities of SPn

Lemma ([7]). Let $S G_{n}$ be the singular braid group on n strands generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}, x_{1}$, x_{2}, \ldots, x_{n-1} and $s_{1}, s_{2}, \ldots, s_{n-1}$ the transpositions of the symmetric group S_{n}. Then a surjective homomorphism of groups exists

$$
v_{n}: S G_{n} \rightarrow S_{n}
$$

such that for every $1 \leq i \leq n-1$ results

$$
v_{n}\left(\sigma_{i}\right)=s_{i}=(i, i+1) \text { e } v_{n}\left(x_{i}\right)=i d .
$$

Lemma ([7]). The following short exact sequence exists

$$
\{i d\} \longrightarrow \operatorname{ker}\left(v_{n}\right) \longrightarrow S G_{n} \xrightarrow{v_{n}} S_{n} \longrightarrow\{i d\} .
$$

Lemma. Let a natural number $n>1$, the group $S G_{n}$, the symmetric group S_{n} and the surjective homomorphism v_{n}. Then the kernel, $\operatorname{ker}\left(v_{n}\right)$, of v_{n}, is a group.

Proposition ([7]). The group $\operatorname{ker}\left(v_{3}\right)$ is isomorphic to the group SB_{3}.
Lemma ([1]). Let $S G_{n}$ be the singular braid group n strands generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}, x_{1}, x_{2}$, \ldots, x_{n-1} and let $s_{1}, s_{2}, \ldots, s_{n-1}$ be the transpositions of the symmetric group S_{n}. Then a surjective homomorphism of groups exists

$$
v_{n}: S G_{n} \rightarrow S_{n}
$$

Such that, for every $1 \leq i \leq n-1$ results

$$
v_{n}\left(\sigma_{i}\right)=v_{n}\left(x_{i}\right)=s_{i}=(i, i+1) .
$$

Lemma. Let a natural number $n>1$, the group $S G_{n}$, the symmetric group S_{n} and the surjective homomorphism v_{n}. Then the kernel, $\operatorname{ker}\left(v_{n}\right)$, of v_{n}, is a group.

The kernel of the surjective homomorphism v_{n} is then called singular pure braid group on n strands and it is indicated with $S P_{n}[5,1]$:

$$
S P_{n}:=\operatorname{ker}\left(v_{n}: S G_{n} \rightarrow S_{n}\right) .
$$

Every element of the set $S P_{n}$ is called singular pure braid.
A pure singular braid diagram is a diagram that represents geometrically an element of $\gamma \in S P_{n}$.
It is emphasized that the singular braids, although being a subset of the group of singular braids, are composed using the operation of vertical concatenation and that the identity element of their group, which is generally indicated with the symbol id or 1_{n}, is the braid with n vertical noncrossing strings.
Furthermore, it is clear that the permutation associated with a pure singular braid is the
permutation of identity in S_{n}.
Proposition ([1]). Let an integer number $n \geq 1, S P_{n}$ the pure singular braid group on n strands, $S G_{n}$ the singular braid group and S_{n} the symmetric group. Then

1) $S P_{n}$ is a normal subgroup of $S G_{n}$:

$$
S P_{n} \unlhd S G_{n} .
$$

2) the quotient group $S G_{n} / S P_{n}$ is isomorphic to the group S_{n} :

$$
S G_{n} / S P_{n} \cong S_{n} .
$$

3) the index $\left(S G_{n}: S P_{n}\right)$ of subgroup $S P_{n}$ in $S G_{n}$ is equal to $n!$:

$$
\left(S G_{n}: S P_{n}\right)=n!.
$$

Proposition ([5]). The pure singular braid group $S P_{n}$ contains a free abelian subgroup of rank $n-$ $1+\lfloor n / 2\rfloor$.
Proposition ([5, 1]). The following short exact sequence holds

$$
\{i d\} \longrightarrow S P_{n} \longrightarrow S G_{n} \xrightarrow{v_{n}} S_{n} \longrightarrow\{i d\}
$$

Main results

The main result of this paper is the Theorem formulated later in this paragraph.
Lemma. If $\alpha=x_{3} x_{2}^{-1} x_{1}{ }^{-1} x_{2} x_{2} x_{3}{ }^{-1} x_{2}{ }^{-1} x_{1} \in S G_{4}$, then $\alpha^{2} \in S P_{4}{ }^{\prime}$.
Proof. $S P_{4}{ }^{\prime}$ denotes the derived group of $S P_{4}$. It is easy to see that the thread of the first braid α starting at position i_{1} at the end is positioned at position f_{3}. The thread (or strand) with the starting position i_{2} connects with the final position f_{4}, the thread starting at position i_{3} ends at position f_{1} and the thread starting at position i_{4} connects with the position f_{2}. Similarly, the threads of the second braid α of the product have the following correspondences:
f_{1} ends at $f f_{4}, f_{2}$ at $f f_{3}, f_{3}$ at $f f_{1}$, and f_{4} at $f f_{2}$ thus the prove is complete.
Corollary. Let the Garside element $\Delta=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \in S G_{4}$ and $\alpha=\sigma_{1}^{3} \sigma_{3}^{3} \Delta^{-1} \in S G_{4}$. Then, α^{2} $\in S P_{4}{ }^{\prime}$.

Lemma. Let the elements $\alpha=x_{3} x_{2}{ }^{-1} x_{1}{ }^{-1} x_{2} x_{2} x_{3}{ }^{-1} x_{2}{ }^{-1} x_{1} \in S G_{4}$ and $\beta \in S P_{4}$. Then, $\alpha \beta \alpha \in S P_{4}$.
Proof. Considering that the strands of the braid β start and end at the same position by definition, it allows us to follow the same procedure as the previous lemma to complete the prove.
Corollary. Let the fundamental element $\Delta \in S G_{4}$ and the elements $\alpha=\sigma_{1}^{3} \sigma_{3}{ }^{3} \Delta^{-1} \in S G_{4}$ and $\beta \in$ $S P_{4}$. Then, $\alpha \beta \alpha \in S P_{4}$.

Theorem. Let an integer $k \geq 1$ and the elements $\gamma=x_{3} x_{2}{ }^{-1} x_{1}^{-1} x_{2}{ }^{2 k} x_{3}{ }^{-1} x_{2}{ }^{-1} x_{1} \in S G_{4}$ and $\beta \in S P_{4}$. Then, $\gamma \beta \gamma \in S P_{4}$.

Proof. Considering that the statement is valid for $k=1$ as stated in the previous lemma and being well known that $x_{2}{ }^{2(k-1)}$ is an element of $S P_{4}$, the ordered strands of the braids $x_{3} x_{2}{ }^{-1} x_{1}{ }^{-1} x_{2}{ }^{2}$ and $x_{3} x_{2}{ }^{-}$ ${ }^{1} x_{1}^{-1} x_{2}^{2 k}$ end at the same positions. This observation allows us to argue that $x_{3} x_{2}{ }^{-1} x_{1}^{-1} x_{2} x_{2} x_{3}{ }^{-1} x_{2}{ }^{-1} x_{1}$ and γ end up at the same positions and the prove is complete.

Corollary. Let an integer $k \geq 1$, the fundamental Garside's element $\Delta \in S G_{4}$ and the elements $\gamma=$ $\sigma_{1}^{2 k+1} \sigma_{3}^{3} \Delta^{-1} \in S G_{4}$ and $\beta \in S P_{4}$. Then, $\gamma \beta \gamma \in S P_{4}$.

Conclusion

In this paper, we presented the classical properties of the $S P_{n}$ group and some of its links with other braid groups such as its derivative $S P_{n}{ }^{\prime}$ group, $S G_{n}$ and B_{n} groups, monoid $S B_{n}$ and S_{n} symmetrical group. We then focused on the particular $S P_{4}$ group and presented some new relations both internal to the group and external with other groups.
In conclusion, I believe that the braid groups are suitable for further theoretical and applicative research, but also for didactic purposes, especially in universities and for high school students.

Declaration of Conflicting Interests

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

Publisher's Note

EDiMaST remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding

This work was not supported by any public or private funds.

Acknowledgements

The author thanks Panagiote Ligouras and the referee for many helpful suggestions and discussions.

References

[1] Bardakov V.G., Kozlovskaya T.A., (2020). On 3-strand singular pure braid group, Preprint arXiv: math.GR/2005.11751v1.
[2] Birman J.S., (1974). Braids, Links and Mapping Class Groups, Annals of Math. Studies 82, Princeton Univ. Press.
[3] Bogopolski O., (2008). Introduction to Group Theory, European Mathematical Society Publishing House, Zürich.
[4] Garside F.A., (1969). The braid group and other groups, Quart. J. Math. Oxford Ser. 20, 235-254.
[5] Dasbach O.T., Gemein B., (1998). The word problem for the singular braid monoid, Preprint: arXiv.math.GT/9809070.
[6] Fenn R., Keyman E., Rourke C., (1998). The singular braid monoid embeds in a group, J. Knot Theory Ramifications, 7, No.7, 881-892.
[7] Gongopadhyay K., Kozlovskaya T., Mamonov O.V., (2020). On some decompositions of the 3strand Singular Braid Group, Preprint arXiv: math.GT/2008.00276v3.
[8] Kassel C., Turaev V., (2008). Braid Groups, Grad. Texts in Math. 247, Springer-Verlag, New York.
[9] Ligouras P., (2019). Upper singular braid monoid SBn+, Experiences of Teaching with Mathematics, Sciences and Technology, ISSN 2421-7247, Vol. 5, pp. 675-687.
[10] Ligouras P., (2020). Semigroups, monoids and free groups, Experiences of Teaching with Mathematics, Sciences and Technology, ISSN 2421-7247, Vol. 5, pp. 515-526.
[11] Vershinin V., (2010). On the singular braid monoid, St. Petersburg Math. J., Vol. 21, No. 5, pp. 693-704.

About the Author

Filomena Pisani
A.S.L. Bari
Via Cesare Battisti, 114, 70011 Alberobello Italy
Email Address: fi.pisani@tiscali.it

Received October 18, 2019; revised December 20, 2019; accepted July 24, 2020; published online December 28, 2020

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

