ISSN 2421-7247

The regular heptagon

Sotiris Goudouvas

Abstract

In the present work we study the construction of the regular heptagon, i.e. the division of the circle into seven equal parts. We prove that the construction with the ruler and compass is impossible and we give a construction with neusis attributed to Archimedes.

Key words. Normal heptagon, geometric construction, cyclotomy, neusis.

Abstract

Sommario. Nel presente lavoro studiamo la costruzione dell'eptagono regolare, ovvero la divisione del cerchio in sette parti uguali. Dimostriamo che la costruzione con il regolo e il compasso è impossibile e diamo una costruzione con neusis attribuita ad Archimede.

Parole chiave. Eptagono normale, costruzione geometrica, ciclotomia, neusis.

Introduction

The regular heptagon is the first of a series of regular polygons that is not constructed by rule and compass (see Stamatis (1961)) ${ }^{1}$. Prior to this, the isosceles triangle, the square, the regular pentagon and the regular hexagon had been constructed by the ancient Greek Geometers in order (see Sidiropoulos (1993)). It is therefore logical that the ancient Greek Geometers were engaged in the construction of the regular heptagon. For their efforts to construct it, we have no sources other than the treatise Archimedes' "On the Normal Heptagon" (Пєрí тov K $\alpha v o v \iota \kappa о v ́ ~ E \pi \tau \alpha \gamma \omega ́ v o v) . ~$ This work has been saved in an Arabic copy of the Arabic mathematician Thabit ibn Qurra (826901 AD) which was included in the work of the Persian mathematician and astronomer Al Birouni (962-1048 AD) "Lessons in Trigonometry" (see Gountouvàs (2017)). There we found Archimedes constructs the regular heptagon with a neusis ${ }^{2}$, as we will see below.

The next non-constructible regular polygon with rule and compass is the regular enneagon with a central angle of 40°. It has been shown that the only integer angles that can be constructed by rule and compass are multiples of 3 . Since the 40° angle is not a multiple of 3 it follows that the regular enneagon is not constructible. In the regular heptagon the central angle $\frac{2 \pi}{7}=\frac{360^{\circ}}{7}$ is that it not an integer, so we cannot decide on its constructability with the above criterion. We will see later with the help of the Wantzel criterion ${ }^{3}$ why this is not buildable.

About dividing the circle into 7 equal parts

We will now negotiate the construction of the regular heptagon with the help of the complex
plane. The method consists in calculating with the help of roots the quantity $\cos \frac{2 \pi}{7} \cdot \theta=\frac{2 \pi}{7}$ is the central angle of the regular heptagon and $\cos \frac{2 \pi}{7}$ is the abscissa $O A$ of the vertex P_{1}, as shown in the figure below (Fig.1).

Fig. 1 - The regular heptagon
We consider at the complex plane the unit circle with center at the beginning of the axes. We also consider the equation

$$
z^{7}-1=0 .
$$

The images of the roots of this equation in the complex plane are on the unit circle and divide it into 7 equal parts, i.e. they are the vertices of the regular heptagon.

The roots of the above equation in trigonometric form are given by the relation:

$$
\mathrm{P}_{k}=\mathrm{Z}_{k}=\cos \frac{2 k \pi}{7}+i \cdot \sin \frac{2 k \pi}{7} \text {, for } k=0,1,2, \ldots, 6 .
$$

The vertices of the regular hexagon $\mathrm{P}_{k}, k=0,1,2, \ldots, 6$ are shown in the figure above (see Fig.2). The symmetry of the figure shows that the values for the cosine of the roots z_{1} and z_{6} are equal, as for the cosine of the roots z_{2} and z_{5} and the roots z_{3} and z_{4}.
If we set for the root $\mathrm{z}_{1}=x_{1}+i y_{1}$, then for its cosine it will hold that:

$$
x_{1}=\mathrm{OA}=\cos \theta=x_{6} \text {, where } \theta=\frac{2 \pi}{7} .
$$

Similarly, for the cosines of the other roots we will have that:

$$
x_{2}=\cos 2 \theta, x_{3}=\cos 3 \theta, x_{4}=\cos 4 \theta, x_{5}=\cos 5 \theta, x_{6}=\cos 6 \theta, \text { where } \theta=\frac{2 \pi}{7} .
$$

Fig. 2 - The regular heptagon
We also have that:

$$
x_{2}=\cos 2 \theta=x_{5} \text { and } x_{3}=\cos 3 \theta=x_{4} .
$$

We now return to the equation $\mathrm{z}^{7}-1=0\left(^{*}\right)$ and have:

$$
z^{7}-1=0 \Leftrightarrow(z-1)\left(z^{6}+z^{5}+z^{4}+z^{3}+z^{2}+z+1\right)=0 .
$$

Since $\mathrm{z}_{0}=1$ is its obvious root, we can divide the above equation by $\mathrm{z}-1$ and get the cyclotomic equation for the regular heptagon:

$$
\frac{z^{7}-1}{z-1}=0 \Leftrightarrow z^{6}+z^{5}+z^{4}+z^{3}+z^{2}+z+1=0 \quad(* *),
$$

which gives us the remaining six roots of equation (*), except for the obvious $\mathrm{z}=1$.
We have now

$$
|z|=1 \Leftrightarrow|z|^{2}=1 \Leftrightarrow z \bar{z}=1 \Leftrightarrow \bar{z}=\frac{1}{z} .
$$

We also set:

$$
x=\mathrm{z}+\frac{1}{\mathrm{z}}=\mathrm{z}+\overline{\mathrm{z}}=2 \operatorname{Re}(\mathrm{z}) .
$$

In the equation $\mathrm{z}^{6}+\mathrm{z}^{5}+\mathrm{z}^{4}+\mathrm{z}^{3}+\mathrm{z}^{2}+\mathrm{z}+1=0$, since we have that $\mathrm{z} \neq 0$, we can divide all the terms of the equation by z^{3} and we will get:

$$
\mathrm{z}^{3}+\mathrm{z}^{2}+\mathrm{z}+1+\frac{1}{\mathrm{z}}+\frac{1}{\mathrm{z}^{2}}+\frac{1}{\mathrm{z}^{3}}=0 \Leftrightarrow\left(\mathrm{z}^{3}+\frac{1}{\mathrm{z}^{3}}\right)+\left(\mathrm{z}^{2}+\frac{1}{\mathrm{z}^{2}}\right)+\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)+1=0 .
$$

But we have that:

$$
\begin{gathered}
\mathrm{z}^{2}+\frac{1}{\mathrm{z}^{2}}=\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)^{2}-2=x^{2}-2 \\
\mathrm{z}^{3}+\frac{1}{\mathrm{z}^{3}}=\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)^{3}-3\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)=x^{3}-3 x .
\end{gathered}
$$

So the equation is done

$$
\begin{aligned}
& x^{3}-3 x+x^{2}-2+x+1=0 \\
& x^{3}+x^{2}-2 x-1=0 \quad(* * *)
\end{aligned}
$$

The roots of equation $\left({ }^{* * *}\right)$ are twice the vertices of the vertices $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ of the regular heptagon, since $x=2 \operatorname{Re}(z)$.
Equation $\left({ }^{* * *}\right)$ is reductive and is 3rd degree (its degree is not a power of 2), so its roots according to the Wantzel criterion are not constructible by rule and compass.
Therefore, the normal heptagon is not buildable by rule and compass.

The Construction of Archimedes by neusis

 regular heptagon in Proposition 17. In Proposition 16 he has given the construction with a straight line so that two parts meet a relation, with the help of which we make the second step of the construction.

Proposition 16.

Let $\mathrm{AB} \Gamma \Delta$ be a square. Extend AB and make the diagonal $\mathrm{A} \Gamma$. From point Δ we have a semicircle that intersects $A \Gamma$ at T and the extension $A B$ at Z so that the triangles $B Z E$ and $\Gamma \Delta T$ are equivalent (isequal). From point T we bring the $K \Lambda$ parallel to $A \Delta$. Then it holds that $A B \cdot K A=B Z^{2}$ and $Z K \cdot B K=K A^{2}$. Also each of the sections BZ and AK is larger than BK.
The construction of the semi-straight $\Delta \mathrm{Z}$ is done by neusis.

Fig. 3 - The regular heptagon

Proposition 17.

Construct a regular heptagon.

Fig. 4 - Construct a regular heptagon

Construction

1. The linear segment AB is considered as given.
2. On this we get two points Γ and Δ such that $\mathrm{A} \Delta \cdot \Gamma \Delta=\Delta \mathrm{B}^{2}$ and $\Gamma \mathrm{B} \cdot \Delta \mathrm{B}=\mathrm{A} \Gamma^{2}$ (The construction is done with the help of Proposal 16).
3. We now construct the triangle $\Gamma \mathrm{H} \Delta$, so that $\Gamma \mathrm{H}=\Gamma \mathrm{A}$ and $\Delta \mathrm{H}=\Delta \mathrm{B}$.
4. Construct the circumscribed circle in the triangle AHB.
5. Extend the segments $\mathrm{H} \Gamma$ and $\mathrm{H} \Delta$ until they divide the circle at the points Z and E respectively.
6. The midpoint of the arc AH is determined and the vertex K is identified.
7. The midpoint of the arc BE is determined and the vertex Λ is identified.
8. The hexagon $A K H B \Lambda E Z$ is regular.

Proof

The triangle $\mathrm{A} \Gamma \mathrm{H}$ is isosceles and consequently the angles $\hat{B A H}$ and $\hat{A H Z}$ are congruent. Since $\hat{B A H}=A \hat{H Z}$ also the arcs BH and AZ are congruent.
The triangles $A H \Delta$ and $\Gamma H \Delta$ are similar because they have a common angle in Δ and

$$
\frac{\Delta \mathrm{H}}{\mathrm{~A} \Delta}=\frac{\Gamma \Delta}{\Delta \mathrm{H}},
$$

since $A \Delta \cdot \Gamma \Delta=\Delta B^{2}$ with $\Delta H=\Delta B$. So the arcs $B H$ and $Z E$ are equal.

The angles $\mathrm{TB} \Gamma=\mathrm{T} \hat{H} \Gamma=\Gamma \hat{H} A$ are equal since go to the arc $A Z$, so the points Γ, H, B, T are homocyclic. So the arcs ВТГ and НГТ are equal (sum of equal arcs), so $\mathrm{B} \Gamma=\mathrm{HT}$ (*)

From the relation $\Gamma \mathrm{B} \cdot \Delta \mathrm{B}=\mathrm{A} \Gamma^{2}$ we have

$$
\Gamma \mathrm{B} \cdot \Delta \mathrm{~B}=\mathrm{A} \Gamma^{2} \Leftrightarrow \mathrm{HT} \cdot \Delta \mathrm{H}=\Gamma \mathrm{H}^{2} \Leftrightarrow \frac{\mathrm{HT}}{\Gamma \mathrm{H}}=\frac{\Gamma \mathrm{H}}{\Delta \mathrm{H}},
$$

We now have for the angles:

$$
\Gamma \hat{\mathrm{T}} \Delta=\Delta \hat{\Gamma} \mathrm{H}, \Delta \hat{\Gamma} \mathrm{H}=2 \cdot \Gamma \hat{\mathrm{~A}} \mathrm{H} \text { and } \Gamma \hat{\mathrm{T}} \Delta=\Delta \hat{\mathrm{B}} \mathrm{H}
$$

so $\Delta \hat{\mathrm{B}} \mathrm{H}=2 \cdot \Gamma \hat{\mathrm{~A}} \mathrm{H}$ then the arc AH is twice the BH and exactly the $\operatorname{arc} \mathrm{EB}$ is twice BH . Finally, since K and L are the means of the arcs AH and BE we have for the 7 arcs that

$$
\hat{\mathrm{AK}}=\hat{\mathrm{KH}}=\hat{\mathrm{HB}}=\hat{\mathrm{BA}}=\hat{\Lambda \mathrm{E}}=\hat{\mathrm{EZ}}=\hat{\mathrm{ZA}},
$$

therefore

$$
\mathrm{AK}=\mathrm{KH}=\mathrm{HB}=\mathrm{B} \Lambda=\Lambda \mathrm{E}=\mathrm{EZ}=\mathrm{ZA},
$$

so the polygon $\mathrm{AKHB} \wedge E Z$ is a regular heptagon.

> When people do not remember Aeschylus, because languages are born and die, they will remember Archimedes because mathematical concepts are eternal.

G. H. Hardy

Note

1. The regular heptagon is not constructible with compass and ruler but is constructible with a marked ruler and compass. This type of construction is called a neusis construction. The impossibility of straightedge and compass construction follows from the observation that $2 \cos \frac{2 \pi}{7} \approx 1.24$ is a zero of the irreducible cubic polynomial $x^{3}+x^{2}-2 x-1$ which is the minimum polynomial of the quantity $2 \cos \frac{2 \pi}{7}$. It is well known that the degree of the minimum polynomial for a constructible number must be a power of 2 .
2. The neusis construction consists of fitting a line element of given length l in between two given lines (r_{1} and r_{2}), in such a way that the line element or its extension passes through a given point A. That is, one end of the line element l has to lie on r_{1}, the other end on r_{2}, while the line of element l passes through point A. Length l is called the diastema. Point A is called the pole of the neusis, line r_{1} the directrix and line r_{2} the catch line.
3. Let be an integer $n>2$. A regular polygon with n sides can be constructed with ruler and compass if and only if n is the product of a power of 2 and any number of distinct Fermat primes. A Fermat prime is a prime number of the form $2^{\left(2^{k}\right)}+1$.

Declaration of Conflicting Interests

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

Publisher's Note

EDiMaST remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Gountouvàs S., (2017). Geometric Routes, Athens.
Sidiropoulos N., (1993). The regular heptagon and Archimedes, Thessaloniki.
Stamatis E., (1961). Archimedes, On the regular Heptagon, Bulletin EME, Athens, 9(2), 9-24.

About the Authors

\(\left.\begin{array}{l}Sotìris Goudouvàs

1st Lyceum of Argyroupolis

Evrou 6, 16451 Argyroupolis (Greece)

sotgo1967@yahoo.gr\end{array}\right\}\)| Sotiris Goudouvas obtained a degree in mathematics from the University of |
| :--- |
| Ioannina (Greece) and later obtained a degree in Civil Engineering from EMП |
| of Athens. |
| He holds two Master's Degrees in Teaching Methodology and History of |
| Mathematics from the University of Athens and Modern and Contemporary |
| History from Panteion University of Athens. |
| He is the author of the book Geometric Routes (2015) and has written various |
| articles in mathematical journals on the History of Mathematics and |
| Geometry. |
| Is a researcher in didactics of Geometry. |
| He works as a Mathematics teacher at the 1st Lyceum of Argyroupolis |
| (Greece). |

Received November 11, 2019; revised July 10, 2020; accepted August 29, 2020; published online September 23, 2020

Open Access This paper is distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0)

