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Abstract. The purpose of this paper is to describe the structure of SBn
+
 monoids and prove 

some new properties. The second purpose of the article is to present the experience carried 

out with mathematics teachers and students from 17 to 21 years old concerning SBn
+
 monoids 

and observe how these concepts were perceived. 
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Sommario. (Monoide di treccia singolare positiva). Lo scopo di questo articolo è quello di 

descrivere la struttura dei monoidi SBn
+
 e provare alcune nuove proprietà. Secondo scopo 

dell’articolo è presentare l’esperienza svolta con docenti di matematica e studenti da 17 a 

21 anni di età inerente i monoidi SBn
+
 e osservare come questi concetti siano stati percepiti.  

Parole chiave. Treccia, Treccia singolare positiva, Monoidi treccia singolare positiva. 

 

Introduction, Preliminaries and Notations 

The main results of this paper are Theorem 1, Theorem 2 and Theorem 3. 

Many researchers, since the last decades of the last century, have concentrated their research on 

the braid groups. From a mathematical point of view, everything began, in an organized way, with 

the first paper [1] by Emil Artin from 1925 and the second paper [2] from 1947. The braid groups 

of Artin is indicated with Bn. Since then many insights into the knowledge of the braid groups 

have been made. Simultaneously and subsequently the researchers began to explore different 

subgroups and generalizations of the Bn group. Generally, the definitions of the braid groups use 

the concepts of generator and relations to formalize their presentations. 

Let be an integer n  1. Recall that the complete canonical presentation [15] of the Artin braid 

group Bn on n strings involves n – 1 generators 1, …, n–1 their opposite 1
–1, 2

–1, …, n–1
–1 and 

the defining system of relations 

(R0)   ij = ji   for |i – j| > 1 

(R2)   ii

–1
 = 1n = i

–1
i  for i = 1, 2, …, n–1 

(R3)   ii+1i = i+1ii+1   for i = 1, 2, …, n–2. 

The generators  1, …,  n–1 are called canonical generators or classical generators [6]. The 

relations (R0) and (R3) are called canonical relations or classical relations. Each Bn element is 

http://www.edimast.it/


Panagiote Ligouras 

 
 

 
676   EDiMaST — Volume 5, 2019 
 
 

called a braid or n-strands braid. Each letter of the alphabet of Bn is called a strand. Each of the 

generators i, in a geometric meaning, represents the twisting of two adjacent strands around each 

other in a specific direction. Each relationship in the Bn group is a consequence of (R0) or (R2) 

or (R3) or two of them or all three relations of the definition of Bn. 

While the Bn elements are called braids the elements of the group 1, …, n–1 generated by 

the 1, …, n–1 generators but without respecting the relationships of braid (R0), (R3) and (R2) 

are called braid words. 

Consider n strands. Each strand has two ends an upper and a lower one. A braid diagram or braid 

diagram on n-strands consists of n strands with fixed upper end points and movable lower 

terminals. The upper endpoints of the threads are aligned from left to right on a horizontal (upper) 

line and the lower endpoints are aligned from left to right on a horizontal (lower) line. So having 

the lower ends free the strands can be intertwined. Each weave consists of the exchange of two 

successive lower end points, applying a half twist that can be carried out both clockwise and 

counter clockwise if viewed from above (see Fig. 1) this type of twist is called elementary weaving 

movement [12]. Braiding n strands consists in repeating a finite number of times the elementary 

intertwining movement in all n part of them. After finishing the weave and making the desired 

braid, the threads can still move individually, provided that their upper and lower ends remain 

motionless, and that the threads do not touch each other. 

The interruption of the strand labelled as 2 that we notice in the figure (see Fig. 1) means that this 

strand passes under the strand labelled as 1. 

Fig. 1 – Elementary intertwining movement by applying a positive half twist in B3. 

The structure of the intersection is not real but it is an artefact of the projection on the plane. 

The positive canonical generators 1, …, n–1, considered from a geometric point of view, 

represent the weaves made by applying a half twist in an anticlockwise direction [19 p.392, 12 

p.36, 9], while the negative canonical generators 1
–1, 2

–1, …, n–1
–1 represent the weaves made 

by applying a half twist in a clockwise direction. 

Fig. 2 – The relation (R0) of the definition of the braid group Bn 

1          2         3 1         2         3 1         2         3 

ij   

i       i+1    …      j      j+1 

. . .    

ji   

i       i+1    …      j      j+1 

. . . (R0) 

= 
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It can be thought that in a half twist in an anticlockwise direction the left filament passes from 

above from the right filament and in that point an appropriate generator is placed i, while if the 

half twist is carried out clockwise the left filament passes under the right filament and corresponds 

to a suitable generator i
–1. These two types of crosses are called real crossings or classical 

crossings. 

Fig. 3 – The relation (R3) of the definition of the braid group Bn 

The figure (see Fig. 2) is a graphical representation of the relation (R0) while the figure (see Fig. 

3) is a graphical representation of the relation (R3) of the Bn group. 

The product between two braids , Bn, with n  2, is their concatenation (or juxtaposition) and 

generates a new braid that we call Bn. The concatenation, which is a binary operation, is 

carried out in this way: the  braid is positioned under (or on the right) the  braid so as to be able 

to join the end of the first strand of the  with the first of the  and continue the same operation in 

sequence with the other strands of the two braids one after the other and end after connecting the 

end of the umpteenth strand of the  with the beginning of the umpteenth strand of the . The new 

braid that has formed is the . The braid 1n is the identity element of Bn. The figure (Fig. 4) 

presents this operation. 

Fig. 4 – The  product between two  and  braids of the B3 group 

The singular braid monoid or singular braid monoid on n-strands or Baez-Birman monoid was 

introduced the same period and independently of Baez in 1992 [3] and by Birman in 1993 [5].  

Let be an integer n  2. The singular braid monoid or Baez-Birman monoid, indicated with SBn, 

is the abstract monoid generated by the: 

 i      i+1   i+2 


i


i+1


i
   

i       i+1   i+2 

i+1
ii+1

   

(R3) 

= 

● 
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 canonical generators 1, …, n–1 and their inverse 1
–1, 2

–1, …, n–1
–1, 

 singular generators x1, …, xn–1, 

from the canonical relations of Bn 

(R0)   ij = ji   for |i – j| > 1 

(R3)   ii+1i = i+1ii+1   for i = 1, 2, …, n–2, 

from the trivial relations of Bn 

(R2)   ii

–1
 = 1n = i

–1
i  for  i = 1, 2, …, n–1, 

from the singular relations 

(S0)   xi xj = xj xi   for |i – j| > 1 

and from the mixed real-singular relations 

(RS0)   xij = j xi   for |i – j| > 1 

(RS2)   xii = i xi   for i = 1, 2, …, n–1 

(RS3)   xii+1i = i+1i xi+1  for i = 1, 2, …, n–2 

(RS4)   ii+1xi = xi+1ii+1  for i = 1, 2, …, n–2. 

In geometric representations, i corresponds to the generator of the classic braid group Bn and xi 

is a new generator representing the intersection of strands i and i+1. That is, a singular geometric 

braid is equal to a geometric braid of the Bn group, except for the fact that simple intersections of 

one string with another which are called singular crossings are allowed. Each singular intersection 

is a double point. Singular crossings are represented by placing a small circle around the point 

where the two strands meet transversely. 

In this group of braids, the xi generators have no inverses. 

Each element of the SBn set is called a singular braid. 

The monoid SBn is an extension of the monoid of Bn. 

The figure (see Fig. 5) is a graphical representation of the generators i, i

–1
 and xi of monoid SBn. 

(a)                        (b)                           (c) 

Fig. 5 – (a) the generator σ
i
 and (b) the generator σ

i
–1 of Bn; (c) the generator x

i
 of SBn 

The monoid SBn
+ 

The definition of SBn
+ also uses generators and relationships as the building blocks. 

Let be an integer n  2. The upper singular braid monoid [6, 22], indicated with SBn
+, is the 

abstract monoid generated by the: 

i            i+1  i            i+1  i            i+1  

σ
i x

i 
σ

i
–1 
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 canonical generators 1, …, n–1, 

 singular generators x1, …, xn–1, 

from the canonical relations of Bn 

(R0)   ij = ji   for |i – j| > 1 

(R3)   ii+1i = i+1ii+1   for i = 1, 2, …, n–2, 

from the singular relations 

(S0)   xi xj = xj xi   for |i – j| > 1 

and from the mixed real-singular relations 

(RS0)   xij = j xi   for |i – j|  2 

(RS2)   xii = i xi   for i = 1, 2, …, n–1 

(RS3)   xii+1i = i+1i xi+1  for i = 1, 2, …, n–2 

(RS4)   ii+1xi = xi+1ii+1  for i = 1, 2, …, n–2. 

A positive singular braid diagram is a diagram that visually represents any SBn
+ on the plane. 

Each SBn
+ is called upper singular braid. 

The alphabet of SBn
+ is  A =  1, …,  n–1, x 1, …, x n–1. 

Two positive words X and Y on the alphabet A are positively equal or positively equivalent [6, 10] 

if they are equivalent. To indicate that X and Y are positively equal we use the symbol: 

X  Y. 

To indicate that X and Y of SBn
+ are identical words we use the symbol: 

X  Y. 

Proposition 1 ([22]). Let be i, j 1, 2, …, n–1 and monoid SBn
+. 

Given the relation i A  jB, where A and B are positive words in the alphabet A, we have: 

 if i = j,   then A  B; 

 if |i – j| = 1,  then A  jiC, B  ijC for some word C; 

 if |i – j|  2,  then A  jC, B  iC for some word C. 

Given the relation i A  xjB, we have: 

 if |i – j| = 1,  then A  j xiC, B  ijC for some word C; 

 if |i – j|  1,  then A  xjC, B  iC for some word C. 

Given the relation xi A  xjB, we have: 

 if j = 1,  then A  jiC, B  ijC for some word C; 

 if |i – j|  2,  then A  xjC,   B  xiC  for some word C; 
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 if |i – j| = 1  impossible case. 

A very important braid of the SBn
+ monoid is the following [10]: 

 = n := (12 …n–1)( 12 …n–2)…( 12)1. 

The braid  is called the fundamental word or the fundamental word of Garside. 

The fundamental word  is inductively defined as follows: 

1 = 1,   2 = 11,   3 = 122,  …,   n = 12 …n–1n–1    for each n ≥ 2. 

The transformation of Garside words  which is also called reflection in SBn
+ or flip is defined 

by the rules  [10]: 

 (i)  n–i 

 (xi)  xn–i. 

Proposition 2 ([22]). Let them be the fundamental word  and the transformation of Garside words 

. In SBn
+ the following relations are valid: 

i   (i)     or equivalently     i   n–i, 

xi   (xi)     or equivalently     xi    xn–i. 

The figure (see Fig. 6) is a graphical representation of the x1   x3 relationship. 

Fig. 6 – Equality x1   x3 in SB4
+
 

Proposition 3 ([22]). Let us be the monoids SBn and SBn
+. If 

 : SBn
+ ↪ SBn 

is canonical homomorphism, then  is a monomorphism. 

1       2       3       4 

x
1
 

 

 

 

123 

 

 

 

12 

 

 

1 

   1       2       3       4 

123 

 

 

 

 

12 

 

 

1 

 

x
3
 

 
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The braid 1, n  

Theorem 1. Let be an integer n  3, the monoid of upper singular braids SBn
+ and the word 

1, n = n–1…21
22…n–1. 

If SBn
+ is a braid that contains only i and xi generators with 1  i  n–2, then we have 

1, n = 1, n. 

Fig. 7 – Graphical representation of the 1, 5 = 1, 5 relation in SB5
+
 

Proof. First we prove that for every 1  i  n–2 we have i1, n = 1, ni. 

in–1…21
22…n–1 

= in–1…i+1i …21
22…ii+1…n–1 

= n–1…ii+1i…21
22…ii+1…n–1 

= n–1…i+1ii+1…21
22…ii+1…n–1 

= n–1…i+1i…21
22…i+1ii+1…n–1 

= n–1…21
22…i+1ii+1…n–1 

= n–1…21
22…ii+1i…n–1 

= n–1…21
22…ii+1…n–1i 

= n–1…21
22…n–1i. 

For every 1  i  n–2 we have xi1, n = 1, n xi. Indeed 

xin–1…21
22…n–1 

= xin–1…i+1i …21
22…ii+1…n–1 

= n–1…xii+1i…21
22…ii+1…n–1 

= n–1…i+1i xi+1…21
22…ii+1…n–1 

= 

 

 
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= n–1…i+1i…21
22…xi+1ii+1…n–1 

= n–1…i+1i…21
22…ii+1xi…n–1 

= n–1…21
22…ii+1 xi…n–1 

= n–1…21
22…ii+1…n–1xi 

= n–1…21
22…n–1xi. 

The braid  is formed only by a combination of generators i and xi with 1  i  n–2. By repeating 

the procedure described above for each individual generator of  in sequence and from left to 

right, the equality of the proposition is verified.       □ 

In the figure (Fig. 6) it is noted that the strands 1, 2, ..., n–1 have no other interaction with the 

strand n beyond 1, n which represents its action. Consequently, both the generators 1, 2, …, n–

2, x1, x2, …, xn–2 and the upper singular words formed by them, including , can move on the first 

n–1 strands without any interaction with strand n. 

Corollary 1. Let be an integer n  3, the monoid of the upper singular braids SBn
+, two positive 

integers k, l such that 1  k < l  n–1 and the word 

k, l = l–1…k+1k
2k+1…l–1. 

If SBn
+ is a braid that does not contain generators m and xm, with 1  m  k and l–1 < m  n–

1, then 


k, l

 = 
k, l
. 

The braid 1, n  

Theorem 2. Let be an integer n  3, the monoid of upper singular braids SBn
+ and the word 


1, n

 = n–1…2 x1
22…n–1. 

If SBn
+ is a braid that contains only i and xi generators with 2  i  n–2, then 


1, n

 = 
1, n
. 

Proof. First we prove that for every 2  i  n–2 we have i1, n
 = 

1, n
i. 

in–1…2 x1
22…n–1 

= in–1…i+1i …2 x1
22…ii+1…n–1 

= n–1…ii+1i…2 x1
22…ii+1…n–1 

= n–1…i+1ii+1…2 x1
22…ii+1…n–1 

= n–1…i+1i…2 x1
22…i+1ii+1…n–1 

= n–1…2 x1
22…i+1ii+1…n–1 

= n–1…2 x1
22…ii+1i…n–1 
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= n–1…2 x1
22…ii+1…n–1i 

= n–1…2 x1
22…n–1i. 

Fig. 8 – Graphical representation of the 
1, 5

 = 
1, 5
 relation in SB5

+
 

For every 2  i  n–2 we have xi1, n
 = 

1, n xi. Indeed, 

xin–1…2 x1
22…n–1 

= xin–1…i+1i …2 x1
22…ii+1…n–1 

= n–1…xii+1i…2 x1
22…ii+1…n–1 

= n–1…i+1i xi+1…2 x1
22…ii+1…n–1 

= n–1…i+1i…2 x1
22…xi+1ii+1…n–1 

= n–1…i+1i…2 x1
22…ii+1xi…n–1 

= n–1…2 x1
22…ii+1xi…n–1 

= n–1…2 x1
22…ii+1…n–1xi 

= n–1…2 x1
22…n–1xi. 

The braid  is formed only by a combination of generators i and xi with 2  i  n–2. By repeating 

the procedure described above for each individual generator of  in sequence and from left to 

right, the equality of the proposition is verified.       □ 

Corollary 2. Let be an integer n  3, the monoid of the upper singular braids SBn
+, two positive 

integers k, l such that 1  k < l  n–1 and the word 


k, l

 = l–1…k+1 xk
2k+1…l–1. 

If SBn
+ is a braid that does not contain generators m and xm, with 1  m  k and l–1 < m  n–

1, then 


k, l

 = 
k, l
. 

= 

 

 
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The braid 1,n 

Theorem 3. Let be an integer n  3, the monoid of upper singular braids SBn
+ and the word 


1, n

 = n–1…2 x112…n–1. 

If SBn
+ is a braid that contains only i and xi generators with 2  i  n–2, then 


1, n

 = 
1, n
. 

 

Fig. 9 – Graphical representation of the 
1, 5

 = 
1, 5
 relation in SB5

+
 

Proof. It is proved that for every 1  i  n–2 results i1, n
 = 

1, n
i. 

in–1…2 x112…n–1 

= in–1…i+1i …2 x112…ii+1…n–1 

= n–1…ii+1i…2 x112…ii+1…n–1 

= n–1…i+1ii+1…2 x112…ii+1…n–1 

= n–1…i+1i…2 x112…i+1ii+1…n–1 

= n–1…2 x112…i+1ii+1…n–1 

= n–1…2 x112…ii+1i…n–1 

= n–1…2 x112…ii+1…n–1i 

= n–1…2 x112…n–1i. 

For every 2  i  n–2 we have xi 1, n =  1, n xi. Indeed,  

xin–1…2 x112…n–1 

= xin–1…i+1i …2 x112…ii+1…n–1 

= n–1…xii+1i…2 x112…ii+1…n–1 

= n–1…i+1i xi+1…2 x112…ii+1…n–1 

= 

 

 



Upper singular braid monoid SBn

+
 

 

 
EDiMaST — Volume 5, 2019  685 
 

 
 

= n–1…i+1i…2 x112…xi+1ii+1…n–1 

= n–1…i+1i…2 x112…ii+1xi…n–1 

= n–1…2 x112…ii+1xi…n–1 

= n–1…2 x112…ii+1…n–1xi 

= n–1…2 x112…n–1xi. 

The braid  is formed only by a combination of generators i and xi with 2  i  n–2. By repeating 

the procedure described above for each individual generator of  in sequence and from left to 

right, the equality of the proposition is verified.       □ 

Corollary 3. Let be an integer n  3, the monoid of the upper singular braids SBn
+, two positive 

integers k, l such that 1  k < l  n–1 and the word 

 k, l = l–1…k+1 xkkk+1…l–1. 

If SBn
+ is a braid that does not contain generators m and xm, with 1  m  k and l–1 < m  n–

1, then 


k, l

 = 
k, l
. 

Discussion and conclusions 

Some of the contents of this contribution have been discussed with a group of teachers and 

students. The experiment lasted 8 hours and is the continuation of two other experiences carried 

out with the same students and related topics of abstract algebra [14] and combinatorics. 

During the meetings few demonstrations of the propositions were proposed but many easy 

examples were presented and carried out. The trainees in collaborative mode, both during the 

meetings and between one meeting and another, have done some simple exercises. 

After the obvious difficulties due to the initial impact with the new topic, the participants, 

managed to follow the activities with greater autonomy than the previous courses. Since the 

number of participants is limited, no generalized statements can be made. 

The experience is continuing with new meetings, involving the same participants further 

deepening the groups of braids that lend themselves well as object for educational experiments at 

school in extra-school hours with pupils of 17-19 years old and at university with students of the 

first two years of scientific courses. 

To study the concepts referred to during this experience, the students also consulted the following 

texts [7, 11, 16, 17, 18, 20, 21]. 
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